In the middle of the desert you can say anything you want
Goal: find identical words with diff embeddings in RU and UA, use that to generate examples.
Link broken but I think I found the download page for the vectors
Their blog is also down but they link the howto from the archive Aligning vector representations – Sam’s ML Blog
Download: fastText/docs/crawl-vectors.md at master · facebookresearch/fastText
axel https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.uk.300.bin.gz
axel https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.ru.300.bin.gz
It’s taking a while.
EDIT: Ah damn, had to be the text ones, not bin. :( starting again
EDIT2: THIS is the place: fastText/docs/pretrained-vectors.md at master · facebookresearch/fastText
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.uk.vec
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.ru.vec
UKR has 900k lines, RUS has 1.8M — damn, it’s not going to be easy.
What do I do next, assuming this works?
Assuming I found out that RU-кит is far in the embedding space from UKR-кіт, what do I do next?
How do I test for false friends?
Maybe these papers about Surzhyk might come in handy now, especially <_(@Sira2019) “Towards an automatic recognition of mixed languages: The Ukrainian-Russian hybrid language Surzhyk” (2019) / Nataliya Sira, Giorgio Maria Di Nunzio, Viviana Nosilia: z / http://arxiv.org/abs/1912.08582 / _>.
Took infinite time & then got killed by Linux.
from fasttext import FastVector
# ru_dictionary = FastVector(vector_file='wiki.ru.vec')
ru_dictionary = FastVector(vector_file='/home/sh/uuni/master/code/ru_interference/DATA/wiki.ru.vec')
uk_dictionary = FastVector(vector_file='/home/sh/uuni/master/code/ru_interference/DATA/wiki.uk.vec')
uk_dictionary.apply_transform('alignment_matrices/uk.txt')
ru_dictionary.apply_transform('alignment_matrices/ru.txt')
print(FastVector.cosine_similarity(ua_dictionary["кіт"], ru_dictionary["кот"]))
Gensim it is.
To load:
from gensim.models import KeyedVectors
from gensim.test.utils import datapath
ru_dictionary = 'DATA/small/wiki.ru.vec'
uk_dictionary = 'DATA/small/wiki.uk.vec'
model_ru = KeyedVectors.load_word2vec_format(datapath(ru_dictionary))
model_uk = KeyedVectors.load_word2vec_format(datapath(uk_dictionary))
Did ru_model.save(...)
and then I can load it as >>> KeyedVectors.load("ru_interference/src/ru-model-save")
Which is faster — shouldn’t have used the text format, but that’s on me.
from gensim.models import TranslationMatrix
tm = TranslationMatrix(model_ru,model_uk, word_pairs)
(Pdb++) r = tm2.translate(ukrainian_words,topn=3)
(Pdb++) pp(r)
OrderedDict([('сонце', ['завишня', 'скорбна', 'вишня']),
('квітка', ['вишня', 'груша', 'вишнях']),
('місяць', ['любить…»', 'гадаю…»', 'помилуй']),
('дерево', ['яблуко', '„яблуко', 'яблуку']),
('вода', ['вода', 'риба', 'каламутна']),
('птах', ['короваю', 'коровай', 'корова']),
('книга', ['читати', 'читати»', 'їсти']),
('синій', ['вишнях', 'зморшках', 'плакуча'])])
OK, then definitely more words would be needed for the translation.
Either way I don’t need it, I need the space, roughly described here: mapping - How do i get a vector from gensim’s translation_matrix - Stack Overflow
Next time:
get more words, e.g. from a dictionary
get a space
play with translations
python - Combining/adding vectors from different word2vec models - Stack Overflow mentions transvec · PyPI that allows accessing the vectors
Anyway - my only reason for them was ft multilingual, I can do others now.
word in model.key_to_index
(which is a dict) works*** RuntimeError: scikit-learn estimators should always specify their parameters in the signature of their __init__ (no varargs). <class 'transvec.transformers.TranslationWordVectorizer'> with constructor (self, target: 'gensim.models.keyedvectors.KeyedVectors', *sources: 'gensim.models.keyedvectors.KeyedVectors', alpha: float = 1.0, max_iter: Optional[int] = None, tol: float = 0.001, solver: str = 'auto', missing: str = 'raise', random_state: Union[int, numpy.random.mtrand.RandomState, NoneType] = None) doesn't follow this convention.
ah damn. Wasn’t an issue with the older one, though the only thing that changed is https://github.com/big-o/transvec/compare/master...Jpsaris:transvec:master
Decided to leave this till better times, but play with this one more hour today.
Coming back to mapping - How do i get a vector from gensim’s translation_matrix - Stack Overflow, I need mapped_source_space
.
I should have used pycharm at a much earlier stage in the process.
mapped_source_space
contains a matrix with the 4 vectors mapped to the target space.Why does source_space
have 1.8k words, while the source embedding space has 200k?
Ah, tmp.translate() can translate words not found in source space. Interesting!
AHA - source/target space gets build only based on the words provided for training, 1.8k in my case. Then it builds the translation matrix based on that.
BUT in translate() the target matrix gets build based on the entire vector!
Which means:
Results!
real
картошка/картопля -> 0.28
дом/дім -> 1.16
чай/чай -> 1.17
паспорт/паспорт -> 0.40
зерно/зерно -> 0.46
нос/ніс -> 0.94
false
неделя/неділя -> 0.34
город/город -> 0.35
он/он -> 0.77
речь/річ -> 0.89
родина/родина -> 0.32
сыр/сир -> 0.99
папа/папа -> 0.63
мать/мати -> 0.52
Let’s normalize:
real
картошка/картопля -> 0.64
дом/дім -> 0.64
чай/чай -> 0.70
паспорт/паспорт -> 0.72
зерно/зерно -> 0.60
false
неделя/неділя -> 0.55
город/город -> 0.44
он/он -> 0.33
речь/річ -> 0.54
родина/родина -> 0.50
сыр/сир -> 0.66
папа/папа -> 0.51
мать/мати -> 0.56
OK, so it mostly works! With good enough tresholds it can work. Words that are totally different aren’t similar (он), words that have some shared meanings (мать/мати) are closer.
Ways to improve this:
https://github.com/frekwencja/most-common-words-multilingual
created pairs out of the words in the dictionaries that are identical (not кот/кіт/кит), will look at similarities of Russian word and Ukrainian word
422 such words in common
sorted by similarity (lower values = more fake friend-y). Nope, doesn’t make sense mostly. But rare words seem to be the most ‘different’ ones:
{'поза': 0.3139531, 'iphone': 0.36648884, 'галактика': 0.39758587, 'Роман': 0.40571105, 'дюйм': 0.43442175, 'араб': 0.47358453, 'друг': 0.4818558, 'альфа': 0.48779228, 'гора': 0.5069237, 'папа': 0.50889325, 'проспект': 0.5117553, 'бейсбол': 0.51532406, 'губа': 0.51682216, 'ранчо': 0.52178365, 'голова': 0.527564, 'сука': 0.5336818, 'назад': 0.53545296, 'кулак': 0.5378426, 'стейк': 0.54102343, 'шериф': 0.5427336, 'палка': 0.5516712, 'ставка': 0.5519752, 'соло': 0.5522958, 'акула': 0.5531602, 'поле': 0.55333376, 'астроном': 0.5556448, 'шина': 0.55686104, 'агентство': 0.561674, 'сосна': 0.56177, 'бургер': 0.56337166, 'франшиза': 0.5638794, 'фунт': 0.56592, 'молекула': 0.5712515, 'браузер': 0.57368404, 'полковник': 0.5739758, 'горе': 0.5740198, 'шапка': 0.57745415, 'кампус': 0.5792211, 'дрейф': 0.5800869, 'онлайн': 0.58176875, 'замок': 0.582287, 'файл': 0.58236635, 'трон': 0.5824338, 'ураган': 0.5841942, 'диван': 0.584252, 'фургон': 0.58459675, 'трейлер': 0.5846335, 'приходить': 0.58562565, 'сотня': 0.585832, 'депозит': 0.58704704, 'демон': 0.58801174, 'будка': 0.5882363, 'царство': 0.5885376, 'миля': 0.58867997, 'головоломка': 0.5903712, 'цент': 0.59163713, 'казино': 0.59246653, 'баскетбол': 0.59255254, 'марихуана': 0.59257627, 'пастор': 0.5928912, 'предок': 0.5933549, 'район': 0.5940658, 'статистика': 0.59584284, 'стартер': 0.5987516, 'сайт': 0.5988183, 'демократ': 0.5999011, 'оплата': 0.60060596, 'тендер': 0.6014088, 'орел': 0.60169894, 'гормон': 0.6021177, 'метр': 0.6023728, 'меню': 0.60291564, 'гавань': 0.6029945, 'рукав': 0.60406476, 'статуя': 0.6047057, 'скульптура': 0.60497975, 'вагон': 0.60551536, 'доза': 0.60576916, 'синдром': 0.6064756, 'тигр': 0.60673815, 'сержант': 0.6070389, 'опера': 0.60711193, 'таблетка': 0.60712767, 'фокус': 0.6080196, 'петля': 0.60817575, 'драма': 0.60842395, 'шнур': 0.6091568, 'член': 0.6092182, 'сервер': 0.6094157, 'вилка': 0.6102615, 'мода': 0.6106603, 'лейтенант': 0.6111004, 'радар': 0.6117528, 'галерея': 0.61191505, 'ворота': 0.6125873, 'чашка': 0.6132187, 'крем': 0.6133907, 'бюро': 0.61342597, 'черепаха': 0.6146957, 'секс': 0.6151523, 'носок': 0.6156026, 'подушка': 0.6160687, 'бочка': 0.61691606, 'гольф': 0.6172053, 'факультет': 0.6178817, 'резюме': 0.61848575, 'нерв': 0.6186257, 'король': 0.61903644, 'трубка': 0.6194198, 'ангел': 0.6196466, 'маска': 0.61996806, 'ферма': 0.62029755, 'резидент': 0.6205579, 'футбол': 0.6209573, 'квест': 0.62117445, 'рулон': 0.62152386, 'сарай': 0.62211347, 'слава': 0.6222329, 'блог': 0.6223742, 'ванна': 0.6224452, 'пророк': 0.6224489, 'дерево': 0.62274456, 'горло': 0.62325376, 'порт': 0.6240524, 'лосось': 0.6243047, 'альтернатива': 0.62446254, 'кровоточить': 0.62455964, 'сенатор': 0.6246379, 'спортзал': 0.6246594, 'протокол': 0.6247676, 'ракета': 0.6254694, 'салат': 0.62662274, 'супер': 0.6277698, 'патент': 0.6280118, 'авто': 0.62803495, 'монета': 0.628338, 'консенсус': 0.62834597, 'резерв': 0.62838227, 'кабель': 0.6293858, 'могила': 0.62939847, 'небо': 0.62995523, 'поправка': 0.63010347, 'кислота': 0.6313528, 'озеро': 0.6314377, 'телескоп': 0.6323617, 'чудо': 0.6325846, 'пластик': 0.6329929, 'процент': 0.63322043, 'маркер': 0.63358307, 'датчик': 0.6337889, 'кластер': 0.633797, 'детектив': 0.6341895, 'валюта': 0.63469064, 'банан': 0.6358283, 'фабрика': 0.6360865, 'сумка': 0.63627976, 'газета': 0.6364525, 'математика': 0.63761103, 'плюс': 0.63765526, 'урожай': 0.6377103, 'контраст': 0.6385834, 'аборт': 0.63913494, 'парад': 0.63918126, 'формула': 0.63957334, 'арена': 0.6396606, 'парк': 0.6401386, 'посадка': 0.6401986, 'марш': 0.6403458, 'концерт': 0.64061844, 'перспектива': 0.6413666, 'статут': 0.6419941, 'транзит': 0.64289963, 'параметр': 0.6430252, 'рука': 0.64307654, 'голод': 0.64329326, 'медаль': 0.643804, 'фестиваль': 0.6438755, 'небеса': 0.64397913, 'барабан': 0.64438117, 'картина': 0.6444177, 'вентилятор': 0.6454438, 'ресторан': 0.64582723, 'лист': 0.64694726, 'частота': 0.64801234, 'ручка': 0.6481528, 'ноутбук': 0.64842474, 'пара': 0.6486577, 'коробка': 0.64910173, 'сенат': 0.64915174, 'номер': 0.64946175, 'ремесло': 0.6498537, 'слон': 0.6499266, 'губернатор': 0.64999187, 'раковина': 0.6502305, 'трава': 0.6505385, 'мандат': 0.6511373, 'великий': 0.6511585, 'ящик': 0.65194154, 'череп': 0.6522753, 'ковбой': 0.65260696, 'корова': 0.65319675, 'честь': 0.65348136, 'легенда': 0.6538656, 'душа': 0.65390354, 'автобус': 0.6544202, 'метафора': 0.65446657, 'магазин': 0.65467703, 'удача': 0.65482104, 'волонтер': 0.65544796, 'сексуально': 0.6555309, 'ордер': 0.6557747, 'точка': 0.65612084, 'через': 0.6563236, 'глина': 0.65652716, 'значок': 0.65661323, 'плакат': 0.6568083, 'слух': 0.65709555, 'нога': 0.6572164, 'фотограф': 0.65756184, 'ненависть': 0.6578564, 'пункт': 0.65826315, 'берег': 0.65849876, 'альбом': 0.65849936, 'кролик': 0.6587049, 'масло': 0.6589803, 'бензин': 0.6590406, 'покупка': 0.65911734, 'параграф': 0.6596477, 'вакцина': 0.6603271, 'континент': 0.6609991, 'расизм': 0.6614046, 'правило': 0.661452, 'симптом': 0.661881, 'романтика': 0.6626457, 'атрибут': 0.66298646, 'олень': 0.66298693, 'кафе': 0.6635062, 'слово': 0.6636568, 'машина': 0.66397023, 'джаз': 0.663977, 'пиво': 0.6649644, 'слуга': 0.665489, 'температура': 0.66552, 'море': 0.666358, 'чувак': 0.6663854, 'комфорт': 0.66651237, 'театр': 0.66665906, 'ключ': 0.6670032, 'храм': 0.6673037, 'золото': 0.6678767, 'робот': 0.66861665, 'джентльмен': 0.66861814, 'рейтинг': 0.6686267, 'талант': 0.66881114, 'флот': 0.6701237, 'бонус': 0.67013747, 'величина': 0.67042017, 'конкурент': 0.6704642, 'конкурс': 0.6709986, 'доступ': 0.6712131, 'жанр': 0.67121863, 'пакет': 0.67209935, 'твердо': 0.6724718, 'клуб': 0.6724739, 'координатор': 0.6727365, 'глобус': 0.67277336, 'карта': 0.6731522, 'зима': 0.67379165, 'вино': 0.6737963, 'туалет': 0.6744124, 'середина': 0.6748006, 'тротуар': 0.67507124, 'законопроект': 0.6753582, 'земля': 0.6756074, 'контейнер': 0.6759613, 'посольство': 0.67680794, 'солдат': 0.6771952, 'канал': 0.677311, 'норма': 0.67757475, 'штраф': 0.67796284, 'маркетинг': 0.67837185, 'приз': 0.6790007, 'дилер': 0.6801595, 'молитва': 0.6806114, 'зона': 0.6806243, 'пояс': 0.6807122, 'автор': 0.68088144, 'рабство': 0.6815858, 'коридор': 0.68208706, 'пропаганда': 0.6826943, 'журнал': 0.6828874, 'портрет': 0.68304217, 'фермер': 0.6831401, 'порошок': 0.6831531, 'сюрприз': 0.68327177, 'камера': 0.6840434, 'фаза': 0.6842661, 'природа': 0.6843757, 'лимон': 0.68452585, 'гараж': 0.68465877, 'рецепт': 0.6848821, 'свинина': 0.6863143, 'атмосфера': 0.6865022, 'режим': 0.6870908, 'характеристика': 0.6878463, 'спонсор': 0.6879278, 'товар': 0.6880773, 'контакт': 0.6888988, 'актриса': 0.6891222, 'диск': 0.68916976, 'шоколад': 0.6892894, 'банда': 0.68934155, 'панель': 0.68947715, 'запуск': 0.6899455, 'травма': 0.690045, 'телефон': 0.69024855, 'список': 0.69054323, 'кредит': 0.69054526, 'актив': 0.69087565, 'партнерство': 0.6909646, 'спорт': 0.6914842, 'маршрут': 0.6915196, 'репортер': 0.6920864, 'сегмент': 0.6920909, 'бунт': 0.69279015, 'риторика': 0.69331145, 'школа': 0.6933826, 'оператор': 0.69384277, 'ветеран': 0.6941337, 'членство': 0.69435036, 'схема': 0.69441277, 'манера': 0.69451445, 'командир': 0.69467854, 'формат': 0.69501007, 'сцена': 0.69557995, 'секрет': 0.6961215, 'курс': 0.6964162, 'компонент': 0.69664925, 'патруль': 0.69678336, 'конверт': 0.6968681, 'символ': 0.6973544, 'насос': 0.6974678, 'океан': 0.69814134, 'критик': 0.6988366, 'доброта': 0.6989736, 'абсолютно': 0.6992678, 'акцент': 0.6998319, 'ремонт': 0.70108724, 'мама': 0.7022723, 'тихо': 0.70254886, 'правда': 0.7040037, 'транспорт': 0.704239, 'книга': 0.7051158, 'вода': 0.7064695, 'кухня': 0.7070433, 'костюм': 0.7073295, 'дикий': 0.70741034, 'прокурор': 0.70768344, 'консультант': 0.707697, 'квартира': 0.7078515, 'шанс': 0.70874536, 'сила': 0.70880103, 'хаос': 0.7089504, 'дебют': 0.7092187, 'завтра': 0.7092679, 'горизонт': 0.7093906, 'модель': 0.7097884, 'запах': 0.710207, 'сама': 0.71082854, 'весна': 0.7109366, 'орган': 0.7114152, 'далекий': 0.7118393, 'смерть': 0.71213734, 'медсестра': 0.71224624, 'молоко': 0.7123647, 'союз': 0.71299064, 'звук': 0.71361446, 'метод': 0.7138604, 'корпус': 0.7141677, 'приятель': 0.71538115, 'центр': 0.716277, 'максимум': 0.7162813, 'страх': 0.7166886, 'велосипед': 0.7168154, 'контроль': 0.7171681, 'ритуал': 0.71721196, 'команда': 0.7175366, 'молоток': 0.71759546, 'цикл': 0.71968937, 'жертва': 0.7198437, 'статус': 0.7203152, 'пульс': 0.7206338, 'тренер': 0.72116625, 'сектор': 0.7221448, 'музей': 0.72323525, 'сфера': 0.7245963, 'пейзаж': 0.7246053, 'вниз': 0.72528857, 'редактор': 0.7254647, 'тема': 0.7256167, 'агент': 0.7256874, 'дизайнер': 0.72618955, 'деталь': 0.72680634, 'банк': 0.7270782, 'союзник': 0.72750694, 'жест': 0.7279984, 'наставник': 0.7282404, 'тактика': 0.72968495, 'спектр': 0.7299538, 'проект': 0.7302779, 'художник': 0.7304505, 'далеко': 0.7306006, 'ресурс': 0.73075294, 'половина': 0.7318293, 'явно': 0.7323554, 'день': 0.7337892, 'юрист': 0.73461473, 'широко': 0.73490566, 'закон': 0.7372453, 'психолог': 0.7373602, 'сигарета': 0.73835427, 'проблема': 0.7388488, 'аргумент': 0.7389784, 'старший': 0.7395191, 'продукт': 0.7395814, 'ритм': 0.7406945, 'широкий': 0.7409786, 'голос': 0.7423325, 'урок': 0.74272805, 'масштаб': 0.74474066, 'критика': 0.74535364, 'правильно': 0.74695253, 'авторитет': 0.74697924, 'активно': 0.74720675, 'причина': 0.7479735, 'сестра': 0.74925977, 'сигнал': 0.749686, 'алкоголь': 0.7517742, 'регулярно': 0.7521055, 'мотив': 0.7527843, 'бюджет': 0.7531772, 'плоский': 0.754082, 'посол': 0.75505507, 'скандал': 0.75518423, 'дизайн': 0.75567746, 'персонал': 0.7561288, 'адвокат': 0.7561835, 'принцип': 0.75786924, 'фонд': 0.7583069, 'структура': 0.75888604, 'дискурс': 0.7596848, 'вперед': 0.76067656, 'контур': 0.7607424, 'спортсмен': 0.7616756, 'стимул': 0.7622434, 'партнер': 0.76245433, 'стиль': 0.76301545, 'сильно': 0.7661394, 'текст': 0.7662303, 'фактор': 0.76729685, 'герой': 0.7697237, 'предмет': 0.775718, 'часто': 0.7780384, 'план': 0.77855974, 'рано': 0.78059715, 'факт': 0.782439, 'конкретно': 0.78783923, 'сорок': 0.79080343, 'аспект': 0.79219675, 'контекст': 0.7926827, 'роль': 0.796745, 'президент': 0.8007479, 'результат': 0.80227, 'десять': 0.8071967, 'скоро': 0.80976427, 'тонкий': 0.8100516, 'момент': 0.8120169, 'нести': 0.81280494, 'документ': 0.8216758, 'просто': 0.8222313, 'очевидно': 0.8242744, 'точно': 0.83183587, 'один': 0.83644223, 'пройти': 0.84026355}
ways to improve:
remove potential bad words from training set
expand looking for candidate words by doing predictable changes a la <_(@Sira2019) “Towards an automatic recognition of mixed languages: The Ukrainian-Russian hybrid language Surzhyk” (2019) / Nataliya Sira, Giorgio Maria Di Nunzio, Viviana Nosilia: z / http://arxiv.org/abs/1912.08582 / _>
add weighting based on frequency, rarer words will have less stable embeddings
look at other trained vectors, ideally sth more processed
And actually thinking about it — is there anything I can solve through this that I can’t solve by parsing one or more dictionaries, maybe even making embeddings of the definitions of the various words?
Fazit: leaving this alone till after the masterarbeit as a side project. It’s incredibly interesting but probably not directly practical. Sad.
By default, <Esc>
— bad idea for the same reason in vim it’s a bad idea.
AND my xkeymap-level keyboard mapping for Esc doesn’t seem to work here.
Default-2 is <C-]> which is impossible because of my custom keyboard layout.
Will be <C-=>
.
{
"command": "vim:leave-insert-mode",
"selector": ".jp-NotebookPanel[data-jp-vim-mode='true'] .jp-Notebook.jp-mod-editMode",
"keys": [
"Ctrl =",
]
}
(I can’t figure out why ,l
etc. don’t work in jupyterlab for this purpose)
(<leader>
is ,
)
"Insert mode mappings
" Leave insert mode
imap <leader>l <Esc>
imap qj <Esc>
" Write, write and close
imap ,, <Esc>:x<CR>
map ,. :w<CR>
… I will have an unified set of bindings for this someday, I promise.
Copypasting this (still draft version) here in full, before radically shortening it for my master thesis.
L’Ukraine a toujours aspiré à être libre
“Ukraine has always aspired to be free.” Voltaire, 1731 1
This section describes the bilingual nature of Ukraine’s society and the impact of historical state policies on the modern development of the language.
The ongoing Russian invasion is viewed by many as a continuation of a long-standing historical pattern, rather than an isolated incident.
This section doesn’t attempt to justify or challenge any particular position regarding the events described, nor is meant to be a definitive account of the history of the language.
But I believe this perspective is important to understanding the current linguistic landscape in Ukraine, as well as the linguistic challenges and phenomena that had a direct relevance on this thesis. (TODO mention how and which tasks are impacted by this)
In Ukraine itself, the status of Ukrainian (its only official language) varies widely, but for a large part of Ukrainians the question was never too much on the foreground (until recently, that is).
A significant number of people in Ukraine are bilingual (Ukrainian and Russian languages), and almost everyone can understand both Russian and Ukrainian.2
The reasons for this include Ukraine’s geographical and cultural proximity to Russia, and was to a large extent a result of consistent policy first of the Russian empire and the Soviet Union.
In the Russian Empire, the broader imperial ideology sought to assimilate various ethnicities into a single Russian identity (with Russian as dominant language), and policies aimed at diminshing Ukrainian national self-consciousness were a facet of that3. TODO source
Ukrainian (then officially called little Russian language/малорусский язык) was stigmatized as a (uncultured town folks’) dialect of Russian, unsuited for ‘serious’ literature or poetry — as opposed to the great Russian language (not editorializing, it was literally called that; these phrasing applied to the names of ethnicities as well, Russia as great Russia and Ukraine as little Russia; the extent to which this referred broader cultural attitudes is a discussion out of scope of this Thesis). (TODO footnote to ‘War and Punishment’ for more on this)
The history of Ukrainian language bans is long enough to merit a Wikipedia page itemizing all the attempts, 4 with the more notable ones in the Russian Empire being the 1863 Valuev Circular (forbidding the use of Ukrainian in religious and educational printed literature) and the Ems Ukaz, a decree by Emperor Alexander II banning the use of the Ukrainian language in print (except for reprinting old documents), forbidding the import of Ukrainian publications and the staging of plays or lectures in Ukrainian (1876). (TODO sources for both)
The 1928 grammar reform (sometimes called Skrypnykivka after the minister of education Skrypnyk) passed during this period, drafted by a commitee of prominent Ukrainian linguists, writers, and teachers synthetized the different dialects into a single orthography to be used across the entire territory.
The Ukrainian writers and intellectuals of that period became known as “the executed Renaissance”: most of them were purged in the years to follow, after the Soviet Union took a sharp turn towards Russification in the late 1920s and in the multiple waves of purges that followed. (Most prominent members of committee behind Skrypnykivka were repressed as well; Skrypnyk himself committed suicide in 1933.)
A new ‘orthographic’ reform was drafted in 1933. It had the stated goal of removing alleged burgeoise influences of the previous one. Andriy Khvylia5, the chairman of the new Orthography Commission described in his 1933 book “Eradicate, Destroy the Roots of Ukrainian Nationalism on the Linguistic Front” (TODO source) how the new reform eliminates all “deadly conservative norms established by nationalists” that “focused the Ukrainian language on the Polish and Czech borgeois cultures (…) and set a barrier between the Ukrainian and Russian language”.
In practice the reform brought the Ukrainian language much closer to Russian in many ways:
Many Ukrainian writers, poets and dissidents kept using the ‘old’ orthography, as well as the Ukrainian community outside the Soviet Union.
After the fall of the Soviet Union, there were many proposals for restoring the original orthography, but only the letter ґ was restored. In 2019 a new version of the Ukrainian orthography was approved, which restored some of the original rules as ’legal’ variants but without mandating any of them.
TODO format citation Debunking the myth of a divided Ukraine - Atlantic Council citing Oeuvres complètes de Voltaire - Voltaire - Google Books ↩︎
While the two languages are mutually intelligible to a large extent, knowing one doesn’t automatically make understand the other - most Russians can’t understand Ukrainian nearly as well as Ukrainians undestand the Russian language, for example. ↩︎
(by no means the only one — but the stories of other victims of Russia’s imperialism are best told elsewhere, and for many ethnicities, especially ones deeper inside Russia’s borders, there’s no one left to tell the story) ↩︎
Later repressed for nationalism. ↩︎
EDIT: this is becoming a more generic thingy for everything I’d ever need to refer to when writing a paper, later I’ll clean this mess.
Resources – DREAM Lab links to https://dream.cs.umass.edu/wp-content/uploads/2020/04/Tips-and-Best-Practices.pdf. Until I set up a system to save PDF info, I’ll paste it as screenshots here:
ChatGPT summarized the relevant pages of the PDF file thus, but didn’t do it well, mostly rewriting myself:
multi-discipli\-nary
\begin{sloppypar}...
for paragraphs where latex goes over the margin.\begin{figure}[t]
\centering
for aligning tables and figures.sth~\cite{whatever}
\emph
over bold or \textit
.\newcommand{\system}{SQuID\xspace}
\xspace
here adds as space unless end of sentence. Package \usepackage{xspace}
\smallskip
, \medskip
, and \bigskip
, instead of \vspace
\linewidth
or \textwidth
.\resizebox
with appropriate dimensions.Compression hacks (see pics)
Paper writing hacks:
best practices - When should I use non-breaking space? - TeX - LaTeX Stack Exchange lists ALL the places where Knuth wanted people to put nonbreaking spaces, incl:
1)~one 2)~two
Donald~E. Knuth
1,~2
Chapter~12
Less obvious and not from him:
I~am
Also:
ALSO
ChatGPT says that citations should come before footnotes to prioritize the scholarly source over unimportant info. So this [32] 3 and not this3 [32]. Basically footnotes after all punctuation and citations. OK
EDIT: NOT PARENTHESES, THEY SHOULD BE WITHIN PARENTHESES.4 DAMN
ALSO
I sometimes write and around ~50%
forgetting that ~
is a nbsp — hard to catch when reading the text.
ALSO
As when writing code I like to add some assert False
(or a failing test) so that I know where I stopped the last time,
\latexstopcompiling here
is a neat way to make sure I REALLY finis ha certain line I started but not finished.
Rounding.
Previously: 211018-1510 Python rounding behaviour with TL;DR that python uses banker’s rounding, with .5th rounding towards the even number.
Floor/ceil have their usual latex notation as \rceil
, \rfloor
(see LaTeX/Mathematics - Wikibooks, open books for an open world at ‘delimiters’)
“Normal” rounding (towards nearest integer) has no standard notation: ceiling and floor functions - What is the mathematical notation for rounding a given number to the nearest integer? - Mathematics Stack Exchange
let XXX denote the standard rounding function
Bankers’ rounding (that python and everyone else use for tie-breaking for normal rounding and .5) has no standard notation as well
Let $\lfloor x \rceil$ denote "round half to even" rounding (a.k.a. "Banker's rounding"), consistent with Python's built-in round() and NumPy's np.round() functions.
Require/Ensure is basically Input/Output and can be renamed thus1:
\floatname{algorithm}{Procedure}
\renewcommand{\algorithmicrequire}{\textbf{Input:}}
\renewcommand{\algorithmicensure}{\textbf{Output:}}
\usepackage{algorithm}
\usepackage{algpseudocode}
% ...
\begin{algorithm}
\caption{Drop Rare Species per Country}
\label{alg:drop}
\begin{algorithmic}
\Require $D_0$: initial set of occurrences
\Ensure $D_1$: Set of occurrences after filtering rare species
\State $D_1 \gets$ \emptyset
\For{each $c$ in Countries}
\For{each $s$ in Species}
\If {$|O_{c,s} \in D_0| \geq 10$} % if observations of species in country in D_0 have more than 10 entries; || is set cardinality
\State{$D_1 \gets D_1 \cup O_{c,s}$}
\EndIf
\EndFor
\EndFor
\end{algorithmic}
\end{algorithm}
from pathlib import Path
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
INTERACTIVE_TABLES=False
USE_BLACK = True
# 100% width table
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
if INTERACTIVE_TABLES:
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True, connected=True)
# black formatting
if USE_BLACK:
%load_ext jupyter_black
# column/row limits removal
pd.set_option("display.max_columns", None)
pd.set_option('display.max_rows', 100)
# figsize is figsize
plt.rcParams["figure.figsize"] = (6, 8)
plt.rcParams["figure.dpi"] = 100
# CHANGEME
PATH_STR = "xxxxx/home/sh/hsa/plants/inat500k/gbif.metadata.csv"
PATH = Path(PATH_STR)
assert PATH.exists()
List of all map providers, not all included in geopandas and some paid, nevertheless really neat: https://xyzservices.readthedocs.io/en/stable/gallery.html
For the 231024-1704 Master thesis task CBT task of my 230928-1745 Masterarbeit draft, I’d like to create an ontology I can use to “seed” LMs to generate ungoogleable stories.
And it’s gonna be fascinating.
I don’t know what’s the difference between knowledge graph, ontology etc. at this point.
I want it to be highly abstract - I don’t care if it’s a forest, if it’s Cinderella etc., I want the relationships.
Let’s try. Cinderella is basically “Rags to riches”, so:
…
Or GPT3’s ideas from before:
"Entities": {
"Thief": {"Characteristics": ["Cunning", "Resourceful"], "Role": "Protagonist"},
"Fish": {"Characteristics": ["Valuable", "Symbolic"], "Role": "Object"},
"Owner": {"Characteristics": ["Victimized", "Unaware"], "Role": "Antagonist"}
},
"Goals": {
"Thief": "Steal Fish",
"Owner": "Protect Property"
},
"Challenges": {
"Thief": "Avoid Detection",
"Owner": "Secure Property"
},
"Interactions": {
("Thief", "Fish"): "Theft",
("Thief", "Owner"): "Avoidance",
("Owner", "Fish"): "Ownership"
},
"Outcomes": {
"Immediate": "Successful Theft",
"Long-term": "Loss of Trust"
},
"Moral Lessons": {
"Actions Have Consequences",
"Importance of Trust",
"Greed Leads to Loss"
}
Here’s it generating an ontology based on the above graph: https://chat.openai.com/share/92ed18ce-88f9-4262-9dd9-f06a07d06acc
And more in UKR: https://chat.openai.com/share/846a5e85-353e-4bb5-adbe-6da7825c51ed
In bold bits I’m not sure of. In decreasing order of abstraction, with the first two being the most generic ones and the latter ones more fitting for concrete stories.
Characteristics
:
Role
: CHARACTER ROLEEntity
: ENTITYGoal
: main goal of entity in this contextSHORT-TERM
: plaintext descriptionLONG-TERM
: plaintext descriptionRemaining issues:
Here’s ChatGPT applying that to Shrek: https://chat.openai.com/share/d96d4be6-d42f-4096-a18f-03f786b802c6
Modifying its answers:
“Using this ontology for abstract fairy tale description, please create a generalized graph structure for THE FIRST HARRY POTTER MOVIE. Focus on the overarching themes and character roles without specific names or unique settings. The graph should include key plot points, character roles, entities, goals, interactions, outcomes, and moral lessons, all described in a manner that is broadly applicable to similar stories.”
<